Carbon stock changes in forests and soils across Sweden: the national inventories

Mattias Lundblad, Hans Petersson and Göran Ståhl
SLU
Or, alternatively….

Elephant measurements in Sweden during the past 90 years!

How large has it become?
Outline

- The national forest inventories in Sweden
- Measure or model carbon stock change?
- Carbon stock changes since 1990
- Forecasts
- Conclusions
The national forest inventories (NFIs)

- ... have been conducted since 1923 in Sweden
Areal produktiv skogsmark¹ fördelad på åldersklass. 1923-2012.
Area productive forest land¹ by age class. 1923-2012.

Areal (milj. ha.) Area (milj. ha.)
Important to note

- The basic measurements of the NFI are very relevant for quantifying biomass and biomass change.
- A specific inventory of forest soils was initiated in the 1960s.
- Land use and land-use transfers are easily identified.
The NFI: a large number of sample plots allocated in clusters across Sweden
Above- and belowground biomass

- Measurements of diameters and heights
- Application of biomass models
Litter and soil organic carbon

- Measurements on mineral soils
- Modeling on peatlands
Repeated measurements

- Every 5-10 years
- Change estimation
- Annual figures by interpolation
Outline

- The national forest inventories in Sweden
- *Measure or model carbon stock change?*
- Carbon stock changes since 1990
- Forecasts
- Conclusions
National forest carbon budgets – measure or model?

- Some countries are largely model-based (e.g. Australia)
- Some countries are largely measurement-based (e.g. Sweden)

But:
- Models need to be calibrated through measurements
- No national carbon budgeting systems can be based entirely on measurements
- "Best" choice depends on national conditions
Area-based sampling (measurements)

- 30,000 sample plots across Swedish forests
- Permanent plots; efficient for change estimation
- Unbiased estimates
- Uncertainty can be quantified
- Possible to match carbon pools to land use

The estimator

\[\hat{\Delta B}_i = A_i \cdot \frac{\sum_{j=1}^{n_i} \Delta b_{ij}}{\sum_{j=1}^{n_i} a_{ij}} = A_i \cdot R_i \]

The variance estimator

\[\text{Var}(\hat{\Delta B}_i) \approx \frac{A_i^2}{\left(\sum_{j=1}^{n_i} a_{ij}\right)^2} \cdot n_i \cdot S_{\Delta b_{ij} - R_i \cdot a_{ij}}^2 \]
<table>
<thead>
<tr>
<th>Species</th>
<th>2003 dbh [mm]</th>
<th>2008 dbh [mm]</th>
<th>Running number</th>
<th>KP Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scots pine</td>
<td>266</td>
<td>HWP</td>
<td>7</td>
<td>D</td>
</tr>
<tr>
<td>Scots pine</td>
<td>Dead</td>
<td>HWP</td>
<td>8</td>
<td>D</td>
</tr>
<tr>
<td>Scots pine</td>
<td>217</td>
<td>HWP</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>Scots pine</td>
<td>179</td>
<td>HWP</td>
<td>10</td>
<td>D</td>
</tr>
<tr>
<td>Scots pine</td>
<td>213</td>
<td>221</td>
<td>11</td>
<td>FM</td>
</tr>
<tr>
<td>Scots pine</td>
<td>283</td>
<td>301</td>
<td>13</td>
<td>FM</td>
</tr>
<tr>
<td>Scots pine</td>
<td>254</td>
<td>267</td>
<td>15</td>
<td>FM</td>
</tr>
<tr>
<td>Birch</td>
<td>119</td>
<td>152</td>
<td>18</td>
<td>FM</td>
</tr>
<tr>
<td>Birch</td>
<td>109</td>
<td>127</td>
<td>23</td>
<td>FM</td>
</tr>
<tr>
<td>Scots pine</td>
<td>193</td>
<td>202</td>
<td>24</td>
<td>FM</td>
</tr>
<tr>
<td>Scots pine</td>
<td>164</td>
<td>180</td>
<td>28</td>
<td>FM</td>
</tr>
<tr>
<td>Scots pine</td>
<td>199</td>
<td>HWP</td>
<td>29</td>
<td>D</td>
</tr>
<tr>
<td>Scots pine</td>
<td>146</td>
<td>HWP</td>
<td>30</td>
<td>D</td>
</tr>
<tr>
<td>Birch</td>
<td>128</td>
<td>HWP</td>
<td>32</td>
<td>D</td>
</tr>
<tr>
<td>Birch</td>
<td>102</td>
<td>HWP</td>
<td>33</td>
<td>D</td>
</tr>
<tr>
<td>Scots pine</td>
<td>149</td>
<td>HWP</td>
<td>34</td>
<td>D</td>
</tr>
<tr>
<td>Scots pine</td>
<td>160</td>
<td>178</td>
<td>35</td>
<td>FM</td>
</tr>
<tr>
<td>Birch</td>
<td>69</td>
<td>72</td>
<td>36</td>
<td>FM</td>
</tr>
<tr>
<td>Birch</td>
<td>40</td>
<td>47</td>
<td>37</td>
<td>FM</td>
</tr>
<tr>
<td>Willow</td>
<td>10</td>
<td>38</td>
<td></td>
<td>FM</td>
</tr>
<tr>
<td>Birch</td>
<td>101</td>
<td>39</td>
<td></td>
<td>FM</td>
</tr>
</tbody>
</table>
About uncertainties

- Small (relative) sampling errors at national level
- Larger (relative) sampling errors for small domains
- Modeling errors may be influential (but are difficult to quantify)
- Checks for measurement errors are made in the NFI
Outline

- The national forest inventories in Sweden
- Measure or model carbon stock change?
- *Carbon stock changes in forests since 1990*
- Forecasts
- Conclusions
Forest definition
(at maturity *in situ*)

- Area at least 0.5 ha
- Minimum 10% canopy closure
- Minimum height 5 m
- No other predominant land use
- ~ 28 Mha in Sweden
Emissions/Removals from the LULUCF sector
Total emissions

M ton CO$_2$-eq

-60
-40
-20
0
20
40
60
80
100
120

- LULUCF
- Emissions from biomass
- Total wo LULUCF
What pools are influential?

- Biomass accumulates very large amounts of carbon
- Mineral soils (and HWP) accumulate large amounts of carbon
- Organic soils release fairly large amounts of carbon
Outline

- The national forest inventories in Sweden
- Measure or model carbon stock change?
- Carbon stock changes in forests since 1990
- Forecasts
- Conclusions
Forecasts

- Based on NFI plots and the Heureka RegVis system
Ecosystem processes and forestry management operations

Description of the initial status

Period \(t \)

Future status and production of products and ecosystem services

Period \(t + 1 \)

Period \(t + 2 \)
Forecasted accumulated net emissions (four scenarios)
Conclusions

- Overall, the Swedish forests have been substantial carbon sinks over a long period of time.
- The increase of carbon in biomass, soils and HWP is about 10 Mton annually (about 40 CO$_2$-eq); this is a large portion of the total emissions in the other GHG sectors.
- (However, the removals in the LULUCF sector only to a small extent are accounted for under the current reporting agreements.)