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UN Decade on Ecosystem Restoration

* 01 March 2019, New York —The ,
UN Decade on Ecosystem ‘ . ’
Restoration, declared today by s §
the UN General Assembly, aims to
massively scale up the restoration UN DECADE
of degraded and destroyed
ecosystems as a proven measure
to fight the climate crisis and
enhance food security, water
supply and biodiversity

e Restoration of 350 million
hectares of degraded land
between now and 2030 could
generate USD 9 trillion in
ecosystem services and take an
additional 13-26 gigatons of
greenhouse gases out of the
atmosphere




Rewilding

* Rewilding

— Ecological restoration to
promote self-regulating
complex (biodiverse)
ecosystems

— Key aspects (wildness)
e Reducing human control
* Restoring natural processes

— Spontaneous ecological
dynamics

— Active initial steps to
restore ecological integrity

* Refaunation & trophic
processes

* Natural physical processes,
e.g., hydrology

Perino et al. 2019 Science 364:eaav5570, http://bit.ly/rwScience.

RESEARCH
REVIEW SUMMAR
REWILDING

Rewilding complex ecosystems

Andrea Perino”, Henrique M. Pereira®, Laetitia M. Navarro, Néstor Fernindez,
James M. Bullock, Silvia Ceausu, Ainara Cortés-Avizanda, Roel van Klink,

Tobias Kuemmerle, Angela Lomba, Guy Pe’er, Tobias Pli

Chri J. Jens-Cl

José M. Rey
Helen C. Wheeler

BACKGROUND: Rapid global change is creat-
ing for the persi

of natural ecosystems and their biodiversily.
Conscrvation efforts aimed at the protection of
landscapes have had mixed suceess, and there
is an increasing awareness that the long-term
prolection of biodiversily requires inclusion
of flexible restoration along with protection.
Rewilding is one such approach that has been
both promoted and eriticized in recent years.
Proponents emphasize the polential of rewild-
ing to tap opportunities for restoration while
creating benefits for both ecosystems and
societies. Critics disenss the lack of a con-
sislent definition of rewilding and insufficient
knowledge about its potential onteomes. Other
criticisms arise from the mistaken notion that
rewilding actions are planned without consid-
ering societal acceptability and benefits, Here,
we present a framework for rewilding actions
that can serve as a guideline for researchers
and managers. ‘The framework is applicable
to a variety of rewilding approaches, ranging
from passive to trophic rewilding, and aims
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to promote beneficial interactions between
society and nature.

ADVANCES: The concept of rewilding has
evolved from its initial emphasis on protecting
large, connected areas for large carnivore con-
servalion lo a process-oriented, dynamic ap-
proach. On the basis of coneepts from resilience
and complexity theory of social-ecological sys-
tems, we identify trophic complexity, stochastic
disturbances, and dispersal as three erilical com-
ponents of natural ecosystem dynamics. We
propose that the restoration of these processes,
and their interactions, can lead to increased
self-suslainabilily of ecosyslems and should
be at the core of rewilding actions. Building on
these concepts, we develop a framework to
design and evaluate rewilding plans. Alongside
ecological restoration goals, our framework
emphasizes people’s perceptions and exper-
iences of wildness and the regulating and
material contributions from restoring nature.
These societal aspects are important outcomes
and may be critical factors for the success of
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rewilding iniliatives (see the figure). We fur-
ther identify current societal constraints on
rewilding and suggest actions to mitigate them.

OUTLOOK: The concept of rewilding chal-
Ienges us to rethink the way we manage nature
and to broaden our vision about how nature
will respond to changes that society brings, both

intentionally and unin-
tentionally. The effects of
rewilding actions will be
specific to each ecosystem,
and thus a deep undes
standing of the proce:
that shape ecosystems is
critical to anticipate these effects and to take
appropriate management actions, In addition,
the decision of whether a rewilding approach is
desirable should consider stakeholders’ needs and
expectations. To this end, structured restoration
planning—based on participatory processes involv-
ing researchers, managers, and stakeholders—
that inchades monitoring and adaptive manage-
ment can be used. With the recent designation of
2021 2030 as the “decade of ecosystem restora-
tion” by the United Nations General Assembly,
policy- and decisio ke ould prash rewildi
Lopices Lo the forefront of discussions about how
to reach post-2020 biodive ; goals,
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Three key ecological components

* Trophic complexity
* Natural disturbances
* Connectivity/Dispersal
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Wolf (Poland [zbo]; JCS) Dieback from bark beetles (Poland; JCS)

Perino et al. 2019 Science 364:eaav5570, http://bit.ly/rwScience.
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Trophic rewilding
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Science for a wilder Anthropocene: Synthesis and
future directions for trophic rewilding research
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Given the importance of large animals in trophic cascades and their widespread losses and resulting
° ° trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is in-
a S s O c I a t e t ro p I c creasingly baing Implementad for conservation; but remains controversial. Hare, we provida a synthasis of
ilding and wildlife backs as underused sources of
mfcrmanon Together, these Imes of evidence show that trophic cascades may be restored via species
ca SC a e S o ro m o e and ecological It clear, however, that megafauna effects may be affected
by poorly understood trophic complexity effects and interactions with landscape settings, human
activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented,
]
self-regulating

for review March 16, 2015)
its current scientific basis, highlighting trophic cascades as the key conceptual framework, dlscussmg the
and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need

[ ] [ ] [ ]

t ro IC | nte ra ct ions an T ——
trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems.
main lessons learned from ongoing rewilding projects, g the current literature, and
for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for

future research, notably assessing the role of trophic ity, interplay with land: settings, land use,
and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and
reduce human-wildiife conflcts. Finally, we r ping a decision framework for species selec-
L] L] tion, building on functional and phyl i ion and with attention to the potential contribution from
lodiverse ecosystems L]
= conservation | megafauna | reintroduction | restoration | trophic cascades

(Svenning et al. 2016

PNAS)

Mostly megafauna-
based

Human impacts are so pervasive that a new geological
epoch has been proposed: the Anthropocene (1). The
effects on ecosystems and biodiversity are one of the
biggest challenges facing modern society. Large-bod-
ied animals are particularly affected, with massive pre-
historic extinctions (2-4) and severe declines in many
extant species (5). Over the last decades it has be-
come increasingly clear that large animals are often
important for ecosystem function and biodiversity via
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trophic cascades, the propagation of consumer im-
pacts downward through food webs (6, 7). Their wide-
spread losses have led to trophic downgrading on a
global scale, with negative effects on ecosystems and
biodiversity (6-8).

These observations have inspired a new ecological
restoration approach that we here refer to as “trophic
rewilding.” The rewilding concept was introduced
in the late 20th century as a large-scale conservation
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ldea: Megafauna promotes
biodiversity via top-down trophic
processes+

Species groups

® c @ vgiH @ sH
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Increase diversity capacity of natural and semi-natural areas

Svenning et al., in Pettorelli et al. 2019 “Rewilding”, Cambridge University Press, http://bit.ly/rwBESbook
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Background I:
Current species diversity evolved in
megafauna-rich ecosystems
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Rich megafaunas the evolutionary norm
(an evolutionary base-line)

Svenning et al., in Pettorelli et al. 2019 "Rewilding”, Cambridge University Press, http://bit.ly/rwBESbook
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Most extant species are ‘ancient’
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Evolutionary background of ecological
adaptations even deeper

6 —
; ; Prinzing. 2001. The niche
) — . .
g of higher plants: evidence
3 for phylogenetic
conservatism. Proceedings
0 Roy Soc B 268:1483.
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variance explained above species level (%)

Figure 3. Conservatism of different traits measured by (@) one
minus the QVI and (4) by the variance explained above species
level. Grey bars: conservatism of niches along environmental
gradients (present study). Black bars: conservatism of
morphological and physiological traits (from (a) Ackerly &
Reich (1999) and (4) Peat & Fitter (1994)). White bars: the
result of our null models, which simulate the expected values of
conservatism for traits without conservatism.



Rich megafaunas have been the
standard for millions of years
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Strong size-biased defaunation globally

across last 50,000 years

Number of species in

, Extinctions of mammal species: 50,-10,000 yrs BP
size category at start (50 ka)
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Megafauna losses strongly linked to
expansion of Homo sapiens

= A AR i Tk
Sandom et al. & Svenning 2014 Proc Roy Soc B 281:20133254, http://bit.ly/megafauna-extinction;

Smith et al. 2018 Science 360:310-313.
Field Museum Library + Bill Whittaker, https://en.wikipedia.org/wiki/Clovis_culture#t/media/File:Clovis_Rummells_Maske.jpg
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Impacts on megafauna functional groups

A) Herbivores > 1000 kg (actual) B) Herbivores > 1000 kg (natural)
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C) Herbivores 44-1000 kg (actual) D) Herbivores 44-1000 kg (natural)
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Svenning et al. 2016 PNAS 113:898-906 http://bit.ly/rewildingPNAS
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Deep-time perspective — take home

e Current species evolved in megafauna-rich
ecosystems (an evolutionary baseline)

 Modern standard of megafauna-poor ecosystems

— Highly ununsual condition on an evolutionary time
scale

— Completely or largely anthropogenic
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End-Pleistocene/early Holocene plus extant (color) megafauna in South American savannas

16
Sandom et al. & Svenning 2014 Proc Roy Soc B 281:20133254, http://bit.ly/megafauna-extinction; Ill.: M. Antdn.
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Background 2: Strong role of top-
down trophic effects via
megafauna in many ecosystems

Photo: JC Svenning 2011



Role of big and very big herbivores

e Strong potential for

generating A~ D
. Eo | Rl High
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heterogeneity g3 5L E
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world & Low
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. Nutrient dispersa| Herbivore density Herbivore diversity
— Carbon diversification
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Bakker et al. & Svenning 2016 PNAS 113:848-855 http://bit.ly/herbivorePNAS
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Role of big and very big herbivores

Herbivore exclosure in Yellowstone National Park

Photo: JC Svenning 2011



Europe: Forest or wood pasture, or...?

*
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Svenning 2002 Biological Conservation 104:133-148; Sandom et al. 2014 PNAS 111:4162-4167; photos: JCS.




Beetles as indicators

BugsCEP is a research and teachmg aid for palaeoentomology, entomology and

ecology. As well as habitat and distribution data, it mcludes tools for climate and

environmental reconstruction, and facilities for stormg site based abundance and

collection data. A variety of searching and reportmg fimctions greatly augment the
efficiency of beetle based research.

Bugs is built around a comprehensive database of beetle ecology and (mamly)
European fossil records which has been accunmlated over the past 20 years.

Click here or on Pete's beetle to enter the BugsCEP website. ..

...or go directly to downloads or the online help.

The closest thng to a manual is Phil Buckland's thesis. freely available for download
from Umea University Library.

Click here for a list of publications about. citng or using Bugs & BugsCEP.

Please cite BugsCEP as follows:

Buckland, P.I. & Buckland, P.C. (2006). BugsCEP Coleopteran Ecology
Package. IGBP PAGES/World Data Center for Paleoclimatology Data
Contribution Series # 2006-116. NOAA/NCDC Paleoclimatology Program,
Boulder CO, USA. URL.:http./Asvww.nede.noaa.gov/paleo/insect.html or

http:/Avww. bugscep.com

Always mclude version numbers m publications.

Please dwect questions to:
philbuckland (at) arke.unm.se or paulbuckland (at) bugscep.com
New bug found in software! Please see the support page for more info.

Painting by Dr. Peter Skidmore

G W 08.01g, uk
Copris lunaris 21
Sandom, Ejrnaes, Hansen & Svenning 2014 PNAS 111:4162-4167, http://bit.ly/interglacialveg.
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Often high herbivore densities and a mosaic semi-
open/forest landscape during the Last Interglacial

e Ecosystem reconstructions based on fossil beetles (Britain):
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Sandom, Ejrnaes, Hansen & Svenning 2014 PNAS 111:4162-4167, http://bit.ly/interglacialveg.
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High habitat diversity prior to the late-
Quaternary megafauna loss

”...likely that the necessary environmental diversity [for
sustaining interglacial faunal diversity] came from
forest-edge environments which would be deVeieped
and,malntamed by the presence of the Iarger mammals
~themselves” Currant 2000 REemi) ) bl

Wal_gs, Last Interglacial

i
Vit

Sandom, Ejrnaes Hansen & Svennmg 2014 PNAS 111v4162 4167,"-Ht p //bit. Iv/mterglaualveg, Currant 2000
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Mesolithic- also some openness after
loss of elephants, hunting pressure etc.

Pre-agricultural Holocene — pollen ”big data”
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Fig. 2 Spatially aggregated pseudobiomization (PBM) results for temperate and northern Europe (813 sites): percentage of sites
assigned to each LCC per 200 year time interval (9000-0 sp). Grey box shows forest maximum.

Fyfe et al. 2015 Glob. Chang. Biol. 21:1197+
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Systematic review of rewilding research
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Svenning et al. 2016 PNAS 113:898-906 http://bit.ly/rewildingPNAS.
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Much work on megafauna

e Strong potential for

generating A~ D
. Eo | Rl High
vegetation 15| W
heterogeneity g3 5L E
— Benefits biodiversity B _g = o
— Even more relevantin 35%| / 5
a warmer, CO,-rich ~ ~ 88|/
world & Low
. § Q"\\ Mesobrowsers  Mesograzers Megaherbivores
* QOther functions N RN S oS el erbivores Mesobromser
S d d . | £ \\ = e Small herbivores
— Seed dispersa ——
. Nutrient dispersa| Herbivore density Herbivore diversity
— Carbon diversification
27

Bakker et al. & Svenning 2016 PNAS 113:848-855 http://bit.ly/herbivorePNAS
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Much work on natural disturbances
and connectivity

Bees and Social Wasps
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“The European spruce bark beetle Ips typographus in a national park: from pest to keystone
species” Muller et al. 2008 Biol. Cons. 17:2979-3001.
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Much work on natural disturbances

* Connectivity

Connected

<
&

Unconnected Unconnected
(Rectangular) (Winged)

I
0 Time since site creation (years)

and connectivity
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‘ig. 2. Connectivity reduces extinction and increases colonization rates over two decades, result-
ng in accruals of species in connected fragments. (A) Average colonization rates are 5% greater and
ixtinction rates are 2% lower for species in connected fragments than rates for those in unconnected
ragments. These rates are constant over time. The net accrual of colonization credits increases
siodiversity in connected fragments. (B) Plant species richness in connected fragments has increased at a
rreater rate than in unconnected fragments. Shown is the difference in estimated species richness over
ime, illustrating greater increases in richness in connected versus unconnected fragments. This rate
increase has been consistent for nearly two decades and has resulted in connected fragments having
24 more plant species than unconnected fragments (fig. S3). A linear model (on the logit scale) is the best
fit for the difference in species richness between connected and unconnected fragments over time (26).
Shaded regions represent 95% confidence intervals.

“Ongoing accumulation of plant diversity through habitat connectivity in an 18-year
experiment” Damschen et al. 2019 Science 365:1478-1480. 2



Priorities for trophic rewilding research

Global scope

Landscape setting
and societal interactions

Svenning et al., in Pettorelli et al. 2019 "Rewilding”, Cambridge Unive
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How far is restoration possible with
native extant species?
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Climate change effects on rewilding

Jarvie & Svenning 2018 Philosophical Transactions of the Royal Society B 373: 20170446, http://bit.ly/ccRWspp.
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Climate change with limited effect on
potentlal for rewilding (RCP 8.5, 2070)
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Jarvie & Svenning 2018 Philosophical Transactions of the Royal Society B 373: 20170446, http://bit.ly/ccRWspp.
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IMPLEMENTATION RESEARCH



Framework for design &
implementation

* Design:
— Trophic complexity

— Natural/Stochastic
disturbances

— Dispersal/Connectivity

* Implementation

1) Ecosystem status
assessment

2) Social-ecological
constraints

3) Adaptive management

Perino et al. 2019 Science 364:eaav5570, http://bit.ly/rwScience.
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Rewilding complex ecosystems

Andrea Perino”, Henrique M. Pereira®, Laetitia M. Navarro, Néstor Fernfndez,
James M. Bullock, Silvia Ceaugu, Ainara Cortés-Avizanda, Roel van Klink,

Tobias Kuemmerle, Angela Lomba, Guy Pe’er, Tobias Plieninger, José M. Rey Benayas,
Christopher J. Sandom, Jens-Chiristian Svenning, Helen C. Wheeler

BACKGROUND: Rapid global change is creat-
ing fund: 1 for the persi

of natural ecosystems and their biodiversity.
Conscrvation efforts aimed at the protection of
Jandscapes have had mixed success, and there
is an increasing awareness that the long-term
prolection of biodiversily requires inclusion
of flexible restoration along with protection.
Rewilding is one such approach that has been
both promoted and eriticized in recent years.
Proponents emphasize the polential of rewild-
ing to tap opportunitics for restoration while
creating benefits for both ecosystems and
societies. Crities discuss the lack of a con-

to promote beneficial interactions between
society and nature.

rewilding iniliatives (see the figure). We fur-
ther identify current societal constraints on
rewilding and suggest actions to mitigate them.

OUTLOOK: The concept of rewilding chal-
Ienges us to rethink the way we manage nature
and to broaden our vision about how nature
will respond to changes that society brings, both

intentionally and unin-
tentionally. The effects of
rewilding actions will be
specific to each ecosystem,
and thus a deep under-
standing of the processes
that shape ecosystems is
al Lo anticipate these effects and to take
appropriate management actions, In addition,
the decision of whether a rewilding approach is

Read the ful article
at hitp./dx.do

ADVANCES: The concept of rewilding has
evolved from its initial emphasis on protecting
large, connected areas for large carnivore con-
servation Lo a process-oriented, dynamic ap-
proach. On the basis of concepts from resilience
and complexity theory of social-ecological sys
tems, we identify trophic complexity, stochastic
disturbances, and dispersal as three eritical com-
ponents of natural ccosystem dynamics
propose that the restoration of these processes,
and their interactions, can lead to increased

sirable should consider ‘needs and
expectations. To this end, structured restoration
planning—based on participatory processes involv-
ing researchers, managers, and stakeholders—
that inchudes monitoring and adaptive manage-
ment can be used. With (he recent designation of
2021 2030 as the “decade of ecosystem restora-
tion” by the United Nations General by,
policy-and decision-makers could push rewdldiny
Lopies Lo the forefront of discussions about how
to reach post-2020 biodiversity goals.

sislent definition of rewilding and i
knowledge about its potential outcomes. Other
criticisms arise from the mistaken notion that
rewilding actions are planned without consid-
ering societal acceptability and benefits. Here,
we present a framework for rewilding actions
that can serve as a guideline for researchers
and managers. The framework is applicable
toa variety of rewilding approaches, ranging
from passive to trophic rewilding, and aims

Ecological state

8
civersity and
nalexy 620
ed if dis

Trophic complexity

Rewilding actions and outcomes are framed by societal and ecologi-
earesenting the state of

ecosystems 1 a tree-cimensional spac

Perino et al, Stience 364, 351 (2019} 26 April 2019

Dispersal

process. The cifference in volume between  bound:
e restored (vellow pyramic) and the degraded ecosystem (crange
pyramid} is a proxy for the e¥iects of sewilding on the selssustairabiityof  the au

sell- inabilily of y and should
be at the core of rewilding actions. Building on
these concepts, we develop a framework to
design and evaluate rewilding plans. Alongside
ecological restoration goals, our framework
emphasizes people’s perceptions and exper-
jences of wildness and the regulating and
material contributions from restoring nature.
These societal aspects are important outcomes
and may be critical factors for the suceess of

Banefit
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Stochastic disturbances
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Anthropogenic pressure

Socio-ecological context

Potential Potential
rewilding rewilding
sites A species
Urban

Parks, Recreative
Sites, Protected
areas

Conflict/

mitigation
HSC 4
HFc &

Conservation goals

TRAAIL-category: minimal
to partial rewilding
Ecological processes with
simple top-down effects
Greater level of self-
regulating biodiverse
ecosystem

Societal
benefits

Recreation

Livelihood
opportunities

Ecosystem services

Rural

Marginal

Lands, Land
abandoned areas,
Protected areas

Habitat fragmentation

-

HSC mp
HFC B

Lot

TRAAIL-category: partial to
near-full rewilding
Ecological processes with
moderately complex top-
down effects

Greater level of self-
regulating biodiverse
ecosystem

.

-

Recreation

Livelihood
opportunities

Ecosystem services

Wilderness

Land abandoned
areas, National
Parks,

Protected areas

vz,
L &

»

Pedersen et al. & Svenning, in press, AMBIO

Geographical scale of rewilding initiative

HSC §
HFC §

TRAAIL-category: near-full
to full rewilding
Ecological processes with
highly complex top-down
effects

Self-regulating biodiverse
ecosystem

-

Eco-tourism

Livelihood
opportunities

Ecosystem services
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Design considerations

Spatial scale Topographic-edaphic conditions

Q
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o Small Area size Large Low Heterogeneity High
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Much  Ongoing management needed None Low Biodiversity potential High
Initial vegetation structure Resident species pool
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Svenning et al., in Pettorelli et al. 2019 “Rewilding”, Cambridge University Press, http://bit.ly/rwBESbook
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A trophic rewilding scale to guide
terminology and management

Degree of self-regulation

v

First eco-measure Interventions to advance to next eco-measure
Continuity of the Ensure that animals has year round access
accessibility to the Low | to the ecosystem
ecosystem
for the animals
High Done No
! !
Second eco-measure Interventions to advance to next eco-measure Category
Opportunities for animals| Reduce fodder supply, allow presence of dead Effort-intensive
to exert their natural Low »| animals, avoid population regulation if natural No conservation
ecological function under numbers of predators are present, reduce level management
low management regime of continous interventions
High Done
|
Third eco-measure Interventions to advance to next eco-measure Category
Potential of animal Ensure that the choice of animal species Minimal
species to advance i LOW_, matches the ecosystem in terms of seasonality, No rewilding
self-regulating hydrology, food availability, topography, and
biodiverse ecosystems dominant vegetation structure.
High Done
Y l
Fourth eco-measure Interventions to advance to next eco-measure Category
Potential of the Remove or enlarge fence or increase fence Partial
ecosystem to support Low _ | permeability, increase connectivity between No rewilding
natural population | habitats, increase heterogeneity of habitats,
dynamics reduce potential human-wildlife conflicts
High Done
v
Fifth eco-measure Interventions to advance the rewilding degree Category
Potential of the Increase the presence of natural predators, Near-full
ecosystem to support Low »| prey, guilds, competitors, symbionts, No rewilding
natural species scavengers, decomposers
interaction networks
High Done
Category

Pedersen et al. & Svenning, 2019, AMBIO, http://bit.ly/traailambio

Full rewidling

38


http://bit.ly/traailambio

Framework for measuring progress in
general rewilding projects

Rewilding
score (R)

Supplementary feeding to wildlife

Population reinforcement (e.g., reintroductions)
Agricultural inputs and outputs

Forestry inputs and outputs

Grassland inputs and outputs

Mining inputs and outputs

Harvesting of terrestrial wildlife

Harvesting of aquatic wildlife

Carrion removal

Deadwood removal

initial state

OooOoOoooooao

Natural snow and rock avalanche regimes

Natural fire regimes

Natural hydrological regimes

Natural pest regimes and mortality events

Terrestrial landscapes fragmentation

Aquatic landscapes fragmentation

Spontaneous vegetation dynamics (ecological succession)
Absence of harmful invasive species

Terrestrial species composition (occupancy, viability, time
spent in the area)

alternative management

Human inputs and outputs (H)

Oooooooooo

Ecological integrity (E)
Restored megafauna species

39
Torres et al. 2019 Philosophical Transactions of the Royal Society B B 373: 20170433, http://bit.ly/RWprog.
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Rewilding - & Questions

Ecological restoration to promote self-
regulating complex ecosystems FCOGRAPHY
A key element: Trophic rewilding

—  Key background

— Megafauna-rich evolutionary baseline

— Ecological importance of megafauna

— Working hypothesis:

* Megafauna promotes landscape- to
local-level biodiversity

Research need, but solid background

Literature

— Concept: Svenning et al. 2016 PNAS
113:898-906
http://bit.ly/rewildingPNAS

— Concept: Svenning et al., in Pettorelli et
al. 2019 "Rewilding”, Cambridge
University Press, e
http://bit.ly/rwBESbook

— Interactions with global change:
Theme issue in Philosophical
Transactions Roy Soc B, Bakker &
Svenning (eds) 2018
http://bit.ly/trwPTB

— Role of ecological memory: Schweiger
et al. & Svenning, 2018, Biological
Reviews: http://bit.ly/rwmem ROYAL
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