

Potential sugar production for the beet crop

Potential yield and limitations

Genetic potential: improved assimilate partitioning in sugar beet

Data from field experiments 2012-14

Light capture of sugar beet

calculated from the long-term average global radiation in Göttingen 1952-2014 assumption: 8% reflexion (Gates 1965); 10 % transmission (Monsi 1953)

- Complete canopy cover in times of high radiation
- Min temperature for growth: 3°C
- Growth and development is accelerated with higher temperature
- Early development is important for high light interception
- Optimum temperature for root growth: 18-20°C mean daily temperature

Potential sugar yield

IfZ

calc. from light interception and conversion of light energy into biomass (RUE)

assumptions: root DM from total DM: 0.73, sugar from root DM: 0.77

	Light interception	Conversi		Sugar
	(MJ m ⁻² year)	(g DM MJ		(t ha ⁻¹)
	2000	1.4#	28.0	15.7
	2400	1.4	33.6	18.9
	2000	1.8*	36.0	20.2
	/ 2400	1.8	43.2	24.3
	2000	2.2	44.0	24.7
Long growing period, fast canopy closure		2.2	Efficient convers	sion 29.7
		Kluge-Severin	of light (RUE	2005

Sugar yield after extending the growing period

pot experiment in the greenhouse, 11 sowing dates with 4 harvest dates, 15-22 °C

Further growth and sugar yield increase, but:

- Yield increment declines
- Changes in shape and composition (less sugar, higher non-sugar cont)
- Beet not bolting and frost resistant
- Harvest conditions?

Potential yield and limitations

Water demand – a relation to growth rates

Pot trials 2019 + 2020, greenhouse, growth 219 or 192 days, mean of 4 genotypes, 15-22 °C 5 repl., control treatment 100 % WHC = unlimited water supply

- water demand is driven by growth rates
- Highest water demand when growth is most intense

Effect of drought stress periods on root growth

Pot trial in the greenhouse, 4 water supply treatments, mean of 4 genotypes, 5 repl., drought treatment \triangleq 50 % of WHC for 4 weeks, control treatment \triangleq 100 % WHC

assumptions: transpiration coefficient: 200 I H₂O /kg DM (Ehlers 1992, Hoffmann 2014) sugar from root DM: 0.77, root DM from total DM: 0.73

Sugar yield (t/ha)	Root DM yield (t/ha)	Total DM yield (t/ha)	Water demand (mm/year)
18	23.4	32.0	640
20	26.0	35.6	712
22	28.6	39.1	783
24	31.2	42.7	854

Efficient DM partitioning
⇒ less leaf DM

⇒ more sugar from water

Sugar yield of genotypes in different environments

Field trials 2018 + 2019 with drought stress in Italy, France, Germany (irrigated/non-irrigated = drought), Σ 8 environments, 4 genotypes

- Genotype ranking does not change
- Genotype performance not dependent on environment
- Not only high yield, but also high yield stability

Relationship between sugar content and root yield

field trials, 2018 + 2019 in Italy, France and Germany (with and without irrigation=drought stress), 6 genotypes

Potential yield and limitations

IfZ

Perspectives and limitations for the potential sugar production

- Variety development: high yields, shift in assimilate partitioning
- Extended vegetation period and early sowing: cold tolerance needed: early emergence and fast canopy closure
- > High efficiency in water use: more sugar from the available water
- Focus also on yield stability, not only yield level
- Higher sugar content on the expense of lower root yield
- > Take full advantage of the potential yield: management

